{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "9233d4b8-70a0-4e5e-988e-e3c962a187b8", "metadata": {}, "source": [ "# MNIST Classification\n", "\n", "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/rl-tools/documentation/binder?labpath=05-MNIST%20Classification.ipynb)" ] }, { "attachments": {}, "cell_type": "markdown", "id": "5ff76312", "metadata": {}, "source": [ "In this tutorial we train a simple (fully-connected) model to classify handwritten digits from the MNIST dataset which contains $28 \\times28$ grayscale images like the following:\n", "\n", "
\n", "\"Examples\n", "
\n", "\n", "We flatten the 2D images to $28 \\times 28 = 784$ dimensional input vectors.\n", "\n", "To train this model we first include the CPU operations (CPU implementations of primitive operations). Next, we include the CPU operations for all data structures in `nn` (we are mainly interested in the CPU operations of dense layers). We need to include these before including the operations of the models because the latter build upon the former, hence they should be defined apriori. Finally, we include the persistence operations for the containers which allows us to persist matrices, layers, models, etc. to disk in the form of `HDF5` files. In this tutorial, we are only interested in loading the MNIST dataset from an `HDF5` file. The persistence functions are the only part that has an external dependency in the form of `highfive` a header-only C++ wrapper for the `HDF5` API (which in turn is a requirement of `highfive`). \n", "\n", "As described in [CPU Acceleration](./04-CPU%20Acceleration.ipynb) we will use the OpenBLAS backend to speed up the training (and inference)." ] }, { "cell_type": "code", "execution_count": 1, "id": "db967208-803f-4f0a-b81f-57a56aaa290e", "metadata": {}, "outputs": [], "source": [ "#define RL_TOOLS_BACKEND_ENABLE_OPENBLAS\n", "#include \n", "#include \n", "#include \n", "#include \n", "#include \n", "#include \n", "namespace rlt = rl_tools;" ] }, { "attachments": {}, "cell_type": "markdown", "id": "325a82e1-16cd-450f-b433-e60758071270", "metadata": {}, "source": [ "To be able to open a `HDF5` file and load datasets contained in it we include the `highfive` File API in the main code as well:" ] }, { "cell_type": "code", "execution_count": 2, "id": "394d1ac6-9db5-4304-a206-accd228a2b63", "metadata": {}, "outputs": [], "source": [ "#include " ] }, { "attachments": {}, "cell_type": "markdown", "id": "a9b9c4c1-5506-4932-8423-f65e73a7aff4", "metadata": {}, "source": [ "Since `highfive` is header-only we only need to link `hdf5` for cling to be able to use it:" ] }, { "cell_type": "code", "execution_count": 3, "id": "b0925012-742d-4f55-8b7e-b80a32388a27", "metadata": {}, "outputs": [], "source": [ "#pragma cling load(\"hdf5\")\n", "#pragma cling load(\"openblas\")" ] }, { "attachments": {}, "cell_type": "markdown", "id": "193e3259-dd84-45b0-8f30-efa62768b727", "metadata": {}, "source": [ "Next, we define the usual types:" ] }, { "cell_type": "code", "execution_count": 4, "id": "172d5b3f-8c75-48b9-bfe3-f5bf0c173c62", "metadata": {}, "outputs": [], "source": [ "using T = float;\n", "using DEVICE = rlt::devices::DEVICE_FACTORY;\n", "using TI = typename DEVICE::index_t;" ] }, { "attachments": {}, "cell_type": "markdown", "id": "f73dd6e3-f1e5-4004-87df-3e37ac87e439", "metadata": {}, "source": [ "For the MNIST classification, we are using a supervised training setup with a fully-connected neural network. The fully-connected network we are using consists of one input layer ($784$ dimensional, one hidden layer ($50$ dimensional), and one output layer ($10$ dimensional). Since we like our health, we stick with a (mini) batch size of $32$:\n", "\n", "
\n", "\"Screenshot\n", "
\n", "\n", "Furthermore, we use $ReLU$ non-linearities for the hidden activations (output of the input and hidden layer) and no non-linearity for the output activations. Note that we need to define the dataset size apriori to stick to our design principle of having the size of all loops and data structures be known at compile time. Normally, the size of datasets in `HDF5` files can vary and programs loading them can adapt. Theoretically, this is a minor limitation of **RLtools** but we did not find it to be restricting practically. " ] }, { "cell_type": "code", "execution_count": 5, "id": "94e89468-e305-4cb8-9c4e-0e80f34bcb9e", "metadata": {}, "outputs": [], "source": [ "constexpr TI BATCH_SIZE = 32;\n", "constexpr TI NUM_EPOCHS = 1;\n", "constexpr TI INPUT_DIM = 28 * 28;\n", "constexpr TI OUTPUT_DIM = 10;\n", "constexpr TI NUM_LAYERS = 3;\n", "constexpr TI HIDDEN_DIM = 50;\n", "constexpr auto ACTIVATION_FUNCTION = rlt::nn::activation_functions::RELU;\n", "constexpr auto ACTIVATION_FUNCTION_OUTPUT = rlt::nn::activation_functions::IDENTITY;\n", "constexpr TI DATASET_SIZE_TRAIN = 60000;\n", "constexpr TI DATASET_SIZE_VAL = 10000;\n", "constexpr TI NUM_BATCHES = DATASET_SIZE_TRAIN / BATCH_SIZE;" ] }, { "attachments": {}, "cell_type": "markdown", "id": "ad306a31-f607-4c25-9011-cee290f38496", "metadata": {}, "source": [ "As in the previous examples we assemble the hyperparameters of the model into a stateless, compile-time specification struct and define the optimizer and model types: " ] }, { "cell_type": "code", "execution_count": 6, "id": "9aab0a56-64fe-4d59-8b80-12771b89bce7", "metadata": {}, "outputs": [], "source": [ "using INPUT_SHAPE = rlt::tensor::Shape;\n", "using MODEL_CONFIG = rlt::nn_models::mlp::Configuration;\n", "using OPTIMIZER_SPEC = rlt::nn::optimizers::adam::Specification;\n", "using OPTIMIZER = rlt::nn::optimizers::Adam;\n", "using PARAMETER_TYPE = rlt::nn::parameters::Adam;\n", "using CAPABILITY = rlt::nn::capability::Gradient;\n", "using MODEL_TYPE = rlt::nn_models::mlp::NeuralNetwork;" ] }, { "attachments": {}, "cell_type": "markdown", "id": "4da6f47d-0d15-4497-b086-6bb57923b436", "metadata": {}, "source": [ "Furthermore, we declare the device, random number generator optimizer and model as well as buffers. The buffers are created with a batch size of $1$ because for clarity we iteratively accumulate the gradient for each batch sample by sample in the training loop that is following later. Additionally, we declare and allocate containers for the training and validation data and buffer matrices for the training process:" ] }, { "cell_type": "code", "execution_count": 7, "id": "6f3ec0e0-fc49-4a5d-99fb-97a2485aa9ca", "metadata": {}, "outputs": [], "source": [ "DEVICE device;\n", "TI seed = 0;\n", "auto rng = rlt::random::default_engine(typename DEVICE::SPEC::RANDOM(), seed);\n", "OPTIMIZER optimizer;\n", "MODEL_TYPE model;\n", "typename MODEL_TYPE::Buffer<1> buffers;\n", "\n", "rlt::Matrix> x_train;\n", "rlt::Matrix> x_val;\n", "rlt::Matrix> y_train;\n", "rlt::Matrix> y_val;\n", "\n", "rlt::Matrix> d_loss_d_output_matrix;\n", "\n", "rlt::malloc(device, model);\n", "rlt::malloc(device, buffers);\n", "rlt::malloc(device, x_train);\n", "rlt::malloc(device, y_train);\n", "rlt::malloc(device, x_val);\n", "rlt::malloc(device, y_val);\n", "rlt::malloc(device, d_loss_d_output_matrix);" ] }, { "attachments": {}, "cell_type": "markdown", "id": "a898f2e2-c671-4e45-8586-f3e5dcab692f", "metadata": {}, "source": [ "We use the freshly allocated containers for the dataset to load the MNIST images from the `HDF5` file:" ] }, { "cell_type": "code", "execution_count": 8, "id": "3fefc923-b707-4a40-a035-195338b640bc", "metadata": {}, "outputs": [], "source": [ "std::string dataset_path = \"/data/mnist.hdf5\";\n", "auto data_file = HighFive::File(dataset_path, HighFive::File::ReadOnly);\n", "rlt::load(device, x_train, data_file.getGroup(\"train\"), \"inputs\");\n", "rlt::load(device, y_train, data_file.getGroup(\"train\"), \"labels\");\n", "rlt::load(device, x_val, data_file.getGroup(\"test\"), \"inputs\");\n", "rlt::load(device, y_val, data_file.getGroup(\"test\"), \"labels\");" ] }, { "attachments": {}, "cell_type": "markdown", "id": "4ea8d7f1-6622-405f-a82b-049ca3f1b244", "metadata": {}, "source": [ "Like in the previous tutorial we reset the optimizer state (first and second order moments of the gradient) because they can contain arbitrary data after allocation and randomly initialize the weights of the model:" ] }, { "cell_type": "code", "execution_count": 9, "id": "257be94e-d2f2-4874-85e4-9809e651f373", "metadata": {}, "outputs": [], "source": [ "rlt::reset_optimizer_state(device, optimizer, model);\n", "rlt::init_weights(device, model, rng);" ] }, { "attachments": {}, "cell_type": "markdown", "id": "e9f88db8-b69f-43b5-960a-b6d658f3970f", "metadata": {}, "source": [ "The following cell contains the full training loop for a single epoch (which is usually enough to classify the handwritten MNIST digits with a high accuracy). First, the gradient is set to zero, then for each sample we take a view (zero-copy) into the dataset to get the input and (one-hot encoded) output. We run the forward pass and use a categorical cross entropy loss to judge the similarity of the output distribution (logits that correspond to a softmax over the digits 0-9) and the empirical distribution (one-hot) taken from the ground-truth label. For the training we are only interested in the `::gradient` of this loss but for monitoring the training process we additionally calculate the actual loss value as well. Using the gradient of the loss function (pushing up the logit of the correct digit and pushing down the logits of the wrong digits) we invoke the backpropagation algorithm to calculate and accumulate the gradient of the loss of this example wrt to all parameters in the model. \n", "\n", "Once we finished the loss calculation and gradient accumulation for all samples in the batch we can invoke the optimizer using the `rl_tools::step` operator. In this update step the previously selected optimizer Adam calculates its required statistics (first and second order moment of the gradient of each parameter in the model) and updates the parameters based on it. We iterate through all (full) batches available in the dataset (making up one epoch):" ] }, { "cell_type": "code", "execution_count": 10, "id": "77226a3d-9fb6-46bc-89d3-3e180d189358", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "batch: 0/1875 loss: 0.316716\n", "batch: 100/1875 loss: 0.0166465\n", "batch: 200/1875 loss: 0.0342549\n", "batch: 300/1875 loss: 0.00740141\n", "batch: 400/1875 loss: 0.0110341\n", "batch: 500/1875 loss: 0.0126302\n", "batch: 600/1875 loss: 0.00469487\n", "batch: 700/1875 loss: 0.00688183\n", "batch: 800/1875 loss: 0.0067776\n", "batch: 900/1875 loss: 0.00977279\n", "batch: 1000/1875 loss: 0.0164546\n", "batch: 1100/1875 loss: 0.0075738\n", "batch: 1200/1875 loss: 0.00442839\n", "batch: 1300/1875 loss: 0.00851566\n", "batch: 1400/1875 loss: 0.0133736\n", "batch: 1500/1875 loss: 0.00693788\n", "batch: 1600/1875 loss: 0.00831009\n", "batch: 1700/1875 loss: 0.00406855\n", "batch: 1800/1875 loss: 0.00881268\n" ] } ], "source": [ "for (int batch_i=0; batch_i < NUM_BATCHES; batch_i++){\n", " T loss = 0;\n", " rlt::zero_gradient(device, model);\n", " for (int sample_i=0; sample_i < BATCH_SIZE; sample_i++){\n", " auto input = rlt::row(device, x_train, batch_i * BATCH_SIZE + sample_i);\n", " auto output = rlt::row(device, y_train, batch_i * BATCH_SIZE + sample_i);\n", " auto prediction = rlt::row(device, model.output_layer.output, 0);\n", " rlt::forward(device, model, input, buffers, rng);\n", " rlt::nn::loss_functions::categorical_cross_entropy::gradient(device, prediction, output, d_loss_d_output_matrix, T(1)/((T)BATCH_SIZE));\n", " loss += rlt::nn::loss_functions::categorical_cross_entropy::evaluate(device, prediction, output, T(1)/((T)BATCH_SIZE));\n", " rlt::backward(device, model, input, d_loss_d_output_matrix, buffers);\n", " }\n", " loss /= BATCH_SIZE;\n", " rlt::step(device, optimizer, model);\n", " if(batch_i % 100 == 0){\n", " std::cout << \"batch: \" << batch_i << \"/\" << NUM_BATCHES << \" loss: \" << loss << std::endl;\n", " }\n", "}" ] }, { "attachments": {}, "cell_type": "markdown", "id": "801cd1f5-a71a-4ae5-bf17-4d76c8b4d181", "metadata": {}, "source": [ "In the following we validate the trained model on a held-out validation dataset and print some examples of classified handwritten digits. Finally we print the classification accuracy on the valiation set which should be above $90\\%$ in our experience which is quite surprising given that we only use a simple, full-connected neural network as the model:" ] }, { "cell_type": "code", "execution_count": 11, "id": "b9b2aacb-1f87-4657-8ac3-ef794b3aecf7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " \n", " \n", " \n", " \n", " \n", " \n", " \n", " 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 7 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 7 \n", " 7 7 7 7 7 \n", " 7 7 7 7 \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 \n", " 9 9 9 9 9 \n", " 9 9 9 9 9 \n", " 9 9 9 9 9 \n", " 9 9 9 9 \n", " 9 9 9 9 9 \n", " 9 9 9 9 9 \n", " 9 9 9 9 \n", " 9 9 9 9 9 \n", " 9 9 9 9 \n", " 9 9 9 \n", " \n", " \n", " \n", " 6 6 \n", " 6 6 6 6 \n", " 6 6 6 6 6 \n", " 6 6 6 6 \n", " 6 6 6 6 6 \n", " 6 6 6 \n", " 6 6 6 \n", " 6 6 6 6 \n", " 6 6 6 6 \n", " 6 6 6 \n", " 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " 6 6 6 6 \n", " 6 6 6 6 6 \n", " 6 6 6 6 6 \n", " 6 6 6 6 \n", " 6 6 6 \n", " 6 6 6 \n", " 6 6 6 \n", " 6 6 \n", " 6 6 6 \n", " 6 6 6 \n", " 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 6 6 6 \n", " 6 6 6 6 6 6 6 \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 \n", " 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 \n", " 4 4 4 4 \n", " 4 4 4 4 4 \n", " 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 \n", " 4 4 4 4 4 \n", " 4 4 4 4 \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " 3 3 3 3 3 3 3 3 3 \n", " 3 3 3 3 3 3 3 3 3 3 3 \n", " 3 3 3 3 3 3 3 3 3 3 \n", " 3 3 3 3 3 3 3 \n", " 3 3 3 3 3 \n", " 3 3 3 3 3 \n", " 3 3 3 3 3 \n", " 3 3 3 3 3 3 \n", " 3 3 3 3 3 3 3 3 \n", " 3 3 3 3 3 3 3 3 3 3 3 3 \n", " 3 3 3 3 3 3 3 3 3 3 3 3 3 \n", " 3 3 3 3 3 3 3 \n", " 3 3 3 3 \n", " 3 3 3 3 \n", " 3 3 3 3 \n", " 3 3 3 3 \n", " 3 3 3 3 3 3 3 3 \n", " 3 3 3 3 3 3 3 3 3 3 3 3 3 \n", " 3 3 3 3 3 3 3 3 3 3 3 \n", " 3 3 3 3 3 3 3 \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " 9 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 9 9 9 9 9 9 \n", " 9 9 9 \n", " 9 9 9 \n", " 9 9 9 \n", " 9 9 9 \n", " 9 9 9 \n", " 9 9 9 \n", " 9 9 9 9 \n", " 9 9 9 9 \n", " 9 9 9 9 \n", " 9 9 9 9 \n", " 9 9 9 \n", " \n", " \n", " \n", " \n", " 1 1 1 \n", " 1 1 1 \n", " 1 1 1 1 \n", " 1 1 1 \n", " 1 1 1 \n", " 1 1 1 1 \n", " 1 1 1 \n", " 1 1 1 \n", " 1 1 1 1 \n", " 1 1 1 \n", " 1 1 1 \n", " 1 1 1 1 \n", " 1 1 1 \n", " 1 1 1 \n", " 1 1 1 1 \n", " 1 1 1 1 \n", " 1 1 1 1 1 \n", " 1 1 1 1 1 \n", " 1 1 1 1 \n", " 1 1 1 \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " 4 4 4 \n", " 4 4 4 4 \n", " 4 4 4 4 4 \n", " 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 7 7 \n", " 7 7 7 7 7 \n", " 7 7 7 7 7 \n", " 7 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 \n", " 7 7 7 7 7 \n", " 7 7 7 7 7 \n", " 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 \n", " 7 7 7 7 7 7 \n", " 7 7 7 7 7 \n", " 7 7 7 7 7 \n", " \n", "Validation accuracy: 93.01%\n" ] } ], "source": [ "T val_loss = 0;\n", "T accuracy = 0;\n", "for (int sample_i=0; sample_i < DATASET_SIZE_VAL; sample_i++){\n", " auto input = rlt::row(device, x_val, sample_i);\n", " auto output = rlt::row(device, y_val, sample_i);\n", " rlt::forward(device, model, input, buffers, rng);\n", " val_loss += rlt::nn::loss_functions::categorical_cross_entropy::evaluate(device, model.output_layer.output, output, T(1)/BATCH_SIZE);\n", " TI predicted_label = rlt::argmax_row(device, model.output_layer.output);\n", " if(sample_i % 1000 == 0){\n", " for(TI row_i = 0; row_i < 28; row_i++){\n", " for(TI col_i = 0; col_i < 28; col_i++){\n", " T val = rlt::get(input, 0, row_i * 28 + col_i);\n", " std::cout << (val > 0.5 ? (std::string(\" \") + std::to_string(predicted_label)) : std::string(\" \"));\n", " }\n", " std::cout << std::endl;\n", " }\n", " }\n", " accuracy += predicted_label == rlt::get(output, 0, 0);\n", "}\n", "val_loss /= DATASET_SIZE_VAL;\n", "accuracy /= DATASET_SIZE_VAL;\n", "std::cout << \"Validation accuracy: \" << accuracy * 100 << \"%\" << std::endl;" ] } ], "metadata": { "kernelspec": { "display_name": "C++17", "language": "C++17", "name": "xcpp17" }, "language_info": { "codemirror_mode": "text/x-c++src", "file_extension": ".cpp", "mimetype": "text/x-c++src", "name": "c++", "version": "17" } }, "nbformat": 4, "nbformat_minor": 5 }